August 2020							SCUC - Chemistry		
S	M	T	W	T	F	S	Pacing Calendar 2020-2021		
2	3	4	5	6	7	1/8	\rangle	State/National Testing	
9	10	11	12	13	14	15	\bigcirc	PD/PLC/Student Holiday	
16	17	[18	19	20	21	22		Student/Staff Holiday	
23	24	25	26	27	28	29	-	QPA/DCUA	
30	31						,	Midterms/Final Exams	
							\triangle	Early Release Days	
September 2020								Late Start	Days
S	M	T	W	T	F	S	Intro	Processes of Chemical Investigations	
		1	2	3	4	5		C.1ABC; C.2ABCDEFGHI; C.3ABCDEF	
6	7	8	9	10	11	12	Unit 1	Matter	
13	14	15	16	17	18	19		C.1ABC; C.2EFHI; C.3AB; C.4ABCD	
20	21	22	23	24	25	26	Unit 2	Atomic Structue \& the Periodic Table	
27	28	29	30					C.1ABC; C.2ABCDEGHI; C.3ABDF; C.5ABC; C.6ABC	
							Unit 3	Chemical Bonding	
October 2020								c.1ABC; C.2CEFHI; C.3ABDEF; C.5C; C.6D; C.7CDE	
S	M	T	W	T	F	S	Unit 4	Chemical Formulas	
				1	2	3		C.1ABC; C.2EFGHI; C.3AB; C.7AB	
4	5	6	7	8	9°	10	Unit 5	Chemical Equations \& Reactions	
11	12	13	-1	15	161	17		C.1ABC; C.2EGHI; C.3ABDF; C.8EF	
18	[19	20	21	22	23	24	Unit 6	Mole Concept	
25	26	27	28	29	30	31		C.1ABC; C.2EFGHI; C.3ABCF; C.8ABCD	
							Unit 7	Stoichiometry	
November 2020								C.1ABC; C.2EFGHI; C.3AB; C.8AGH	
S	M	T	W	T	F	S	Unit 8	Gases	
1	2	3	4	5	6	7		C.1ABC; C.2BCDEFGHI; C.3ABDF; C.8AG; C.9AB	
8	9	10	11	12	13	14	Unit 9	Solutions	
15	16	17	18	19	20	21		C.1ABC; C.2EFGHI; C.3AB; C.10ABCDEF	
22	23	24	25	26	27	28	Unit 10	Acids \& Bases	
29	30							C.1ABC; C.2BCDEFGHI; C.3ABF; C.10EGH	
							Unit 11	Thermochemistry	
December 2020								c.1ABC; C.2EFGHI; C.3AB; C.11ABCD	
S	M	T	W	T	F	S	$\underline{U n i t} 12$	Nuclear Chemistry	
		1	2	3	4	5		C.1ABC; C.2BCDEFGH; ; C.3ABDE; C.12AB	
6	7	8	9	10	11	12	Process standard are embedded throughout instruction of the content. Detailed specificity per unit is located on the TRS Unit IFDs.		
13	14	15	16	11	480	19			
20	21	22	23	24	25	26	Nine Week Reporting Period		
27	28	29	30	31			$1^{\text {st }}$	Aug. 18 - Oct. 16	41 days
							$2^{\text {nd }}$	Oct. 19 - Dec. 18	39 days
January 2021							$\mid 3^{\text {rd }}$	Jan. 5 - Mar. 5 Mar. 15 - May 27	42 days 51 days
S	M	T	W	T	F	S			
					1	2	Quarterly Progress Assessments		
3	4	[5	6	7	8	9	QPA \#/ Units Assessed		Scan by Date
10	11	12	13	14	15	16	QPA 1 = Unit 1, 2		Oct 9th
17	18	19	20	21	22	23	QPA 2= Units 1,2,3,4,5		Dec 18th
24	25	26	27	28	29	30	QPA 3= Units 6,7,8		Feb26th
31							QPA 4 = Units 6-12		May 27th

February 2021						
S	M	T	W	T	F	S
	1	2	3	4	5	6
7	8	9	10	11	12	13
14	15	16	17	18	19	20
21	22	23	24	25	26°	27
28						
March 2021						
S	M	T	W	T	F	S
	1	2	3)	4	5]	6
7	8	9	10	11	12	13
14	[15	16	17	18	19	20
21	22	23	24	25	26	27
28	29	30	31			
April 2021						
S	M	T	W	T	F	S
				1	2	3
4	5	6	7	8)	9	10
11	12	13	14	15	16	17
18	19	20	21	22	23	24
25	26	27	28	29	30	

July 2021							
\mathbf{S}	\mathbf{M}	\mathbf{T}	\mathbf{W}	\mathbf{T}	\mathbf{F}	\mathbf{S}	
			1	2	3	4	
5	6	7	8	9	10	11	
12	13	14	15	16	17	18	
19	20	21	22	23	24	25	
26	27	28	29	30	31		

TCMPC Instrructional Focus Documents can be located at www.teksresourcesystem.net

Students of Honors Chemistry will need to study the following additional concepts within unit 1:

- Separation Methods
- Including but not limited to:
- Distillation (Pearson on-Level Chemistry Textbook, pg. 42) (AP Chemistry Text- Chemistry the Central Science by Brown, pg. 13-14)
- Chromatography (AP Chemistry Text- Chemistry the Central Science by Brown, pg. 14)
- Filtration (Pearson on-Level Chemistry Textbook, pg. 42) (AP Chemistry Text- Chemistry the Central Science by Brown, pg. 13-14)
Matter
- Precipitation (Pearson on-Level Chemistry Textbook, pg. 51) (AP Chemistry Text- Chemistry the Central Science by Brown, pg. 128-132)
- Phase Change Diagrams
- (Pearson on-Level Chemistry Textbook, pg. 462) (AP Chemistry Text- Chemistry the Central Science by Brown, pg. 464)

Honors students will calculate the wavelength, frequency, and energy of light using Planck's constant and the speed of light.

- Use Planck's Constant and the Speed of Light
- ($h=6.63 \times 10^{-34}$) Planck's Constant
- ($c=3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}$) Speed of light as a Wave
- Calculate the wavelength, frequency, and energy of light.
(Approximately 3 Days of Study)
- $\lambda=c / f$ (Wavelength)
- $\mathrm{f}=\mathrm{c} / \lambda$ (Frequency)
- $E_{\text {photon }}=$ hf (Energy= Planck's Constant)(frequency)
- $\mathrm{E}_{\text {photon }}=\mathrm{hc} / \lambda$ Energy $=($ Planck's Constant x Speed of light $) /$ Wavelength

During the first part of unit 3, Honors Chemistry students will be instructed conceptually on ideas of hybridization through SP3.

- (Pearson on-Level Chemistry Textbook, pg. 254-260) - basic information
- (AP Chemistry Text- Chemistry the Central Science by Brown, pg. 359) -extension
- Students of Honors will need to predict molecular structure for molecules with linear, trigonal planar or tetrahedral electron pair geometries using Valence Shell Electron Pair Repulsion Theory (VSEPR) as well as classify molecular structures as stated in streamlined standard 7E.
- Intermolecular forces
(Pearson On-Level Chemistry Textbook, pg. 264-270) - Basic information
(AP Chemistry Text- Chemistry the Central Science by Brown, pg. 446-479)-extension
Unit 4
Chemical
Formulas
Unit 5
Chemical
Equations\& Rxns

Unit 6
Mole
Concept

No additional instructional notes for this unit.

Additional learning requirements for Honors Chemistry students are:

- Net lonic Equations -(Pearson on-Level Chemistry Textbook, pg. 390)
- Balancing of chemical equations to include but not limited to: synthesis, decomposition, single replacement, combustion, net ionic. (Pearson on-Level Chemistry Textbook, pg. 369-373, 389-391, 393)

Students of Honors Chemistry will need to study the following additional concepts within unit 6:

- Empirical Formulas- the simplest ratio of the different elements in a given compound. (Pearson on-Level Chemistry Textbook, pg. 348-349)
- To calculate empirical formulas from molecular formulas:
- Divide the subscripts of each element in a molecular formula by the greatest common divisor.

	- The resulting numbers from dividing by the greatest common divisor are the subscripts for the empirical formula. - To calculate empirical formulas from the mass of each element: - Divide the mass of each element by its molar mass to determine the number of moles of each element. - Calculate the lowest whole number ratio between the number of moles of each element in the compound. - The resulting numbers in the ratio are used as the subscripts for the empirical formula. - Molecular Formulas- chemical formula of a molecule that includes how many atoms of each element are present. (Pearson on-Level Chemistry Textbook, pg. 237-238) - To calculate the molecular formulas given an empirical formula and the molar mass of a substance: - Calculate the molar mass of the empirical formula - Divide the molar mass of the given substance by the molar mass of the empirical formula. - Use the resulting number to multiply the subscripts in the empirical formula to determine the molecular formula.
Unit 7	In unit 7, Honors students will additionally learn the calculation of limiting reagents while learning concepts of stoichiometry. (Pearson on-Level Chemistry Textbook, pg. 422-426)
$\begin{aligned} & \text { Unit } 8 \\ & \text { Gases } \end{aligned}$	- Students of Honors Chemistry will additionally perform stoichiometric calculations, including determination of mass and volume relationships between reactants and products for reactions involving gases within the Ideal Gas Laws. - Determination of mole, mass, and volume relationships between reactants and products for reactions involving gases: - Mole-volume - Mole-mass - Volume-mass - Ensure students are exposed to solving equations that include non-STP.
Unit 9 Solutions	No additional instructional notes for this unit.
Unit 10 Base	Students of Honors Chemistry will need to study the following additional concepts within unit 1: - Dissociation of Acids and Bases K_{A} \& K_{B} - Degrees of Dissociation of Acids \& Bases - Including but not limited to: - Strong \& Weak Acids - Strong \& Weak Bases - Measured by [H^{+}], [OH^{-}], pH (Pearson on-Level Chemistry Textbook, pg. 642-648)
Unit 11 Thermo	No additional instructional notes for this unit.
Unit 12 Nuclear	Honors Chemistry students will additionally calculate rate of decay in half-life. (Pearson on-Level Chemistry Textbook, pg. 754-756, 759) (AP Chemistry Text-Chemistry the Central Science by Brown, pg. 923-925)

